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Abstract

A technique is developed to assess the dynamic contact forces arising after passing road surface
irregularities by a vehicle modelled as a general linear MDOF system. The equations governing vibration of
a vehicle moving along an uneven profile are, first, transformed to the state-space form and, then, to a
system of uncoupled first order complex differential equations. For a local roadway irregularity described
functionally, solutions of all equations are found analytically and expressed in terms of a unique function of
one complex variable, the so-called pothole dynamic amplification factor, which is specific to the irregularity
shape. The solutions obtained are combined to give dependencies of the harmonic components of the
contact forces arising after the passage of the irregularity on the vehicle speed and irregularity dimensions.
The problem is shown to be decomposed into separate calculation of vehicle and pothole-specific data. The
technique developed is not specific to a particular vehicle model or an irregularity shape: the vehicle model
is represented by its mass, stiffness, and damping matrices, and the replacement of one irregularity by
another simply requires replacement of one dynamic amplification factor function by another. The latter
are derived in Appendix A for several pothole configurations. The discussion is amply illustrated by
examples of the application of the technique to the calculation of the tire forces for two simple vehicle
models and several potholes of different shape.
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1. Introduction

The paper is concerned with the assessment of dynamic tire forces that arise after the passage of
a road surface irregularity by a vehicle. The importance of this problem follows from the fact that
typical road surface irregularities can result in large dynamic forces, which, in turn, considerably
affect damage of the infrastructure (pavement or bridges), a significant portion of which in many
countries is either aging or reaching the end of its life. The recently concluded multinational
DIVINE project [1] noted that “trucks ‘wear’ pavements at a rate which is dependent not only on
the static load carried by the vehicle, but also on the dynamic performance of the vehicle, on the
longitudinal profile of the road and on the structural variability of the pavement”. The outcomes
of this project suggest that current understanding of the dynamic interactions between moving
vehicles and the infrastructure carrying them is inadequate.

The effect of road surface irregularities on bridge vibration has been examined in many
publications (see, e.g., Refs. [1-7] and references therein), and many methods for numerically
solving the problem of a vehicle moving along a bridge with an uneven surface have been
developed (e.g., Refs. [4-10]). As can be concluded from the results reported, as well as from our
own numerical experiments, the main cause of high-magnitude bridge vibration is road
unevenness. For example, high values (more than 100%) of the dynamic increment (DI) (defined
as the ratio of the difference of the peak dynamic and static deflections to the peak static
deflection) reported in some publications (e.g., Refs. [1-3]) cannot be explained if we assume a flat
longitudinal profile of the bridge and its approaches. The report [1] states that “the surface profile
of a bridge and its approaches are fundamental to the response of the truck suspension and in turn
the dynamic response of the bridge’ and notes further that “for a smooth profile, the influence of
the truck suspension is insignificant”. The main difficulty associated with this problem is in the
large number of parameters involved. As a result, most studies are confined to extensive numerical
modelling or field experiments. An obvious disadvantage of these approaches is that results of
numerical or field experiments are often valid only for a particular bridge and vehicle and cannot
easily be generalized to other configurations. It is then not surprising that results reported in the
literature are sometimes contradictory (some examples of this kind are discussed in Ref. [11]).

In view of complexity of the problem of coupled bridge—vehicle vibration associated with a
large number of parameters affecting the solution in a non-trivial way, it seems advisable to start
our examination from certain typical isolated irregularities and to examine the problem of finding
the vehicle response due to the passage of an irregularity located on the rigid foundation. To
justify this point, we note that the local character of an irregularity suggests shortness of the
passage time and, in view of considerable inertia of the bridge, its dynamics cannot be noticeably
changed during that time. In addition, analysis of results of field and numerical experiments
reported in the literature, as well as our numerical experiments, show that dynamic contact forces
due to typical road surface irregularities are considerably greater than those caused by coupled
bridge—vehicle vibration in the case of an ideally smooth road surface. Hence, neglecting the
bridge dynamics, we find adequate approximations of the vehicle oscillations and dynamic forces
that arise during, or immediately after, the passage of a short road surface irregularity. The effect
of these additional forces on the bridge dynamics depends on their frequencies and magnitudes.
Thus, in order to learn whether the bridge response can noticeably be affected by an irregularity,
we basically need to know whether the vehicle eigenfrequencies match the fundamental frequency
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of the bridge and whether the magnitudes of the corresponding harmonic forces due to the
irregularity are sizeable.

The problem of calculation of the dynamic forces arising after passing an irregularity is very
important, also, in studies related to pavement damage [1,12—15]. Based on experimental results
reported in the literature, Potter et al. [15] conclude that the peak damage due to dynamic loads
can be between 1.5 and 12 times the level of damage caused by a static load and note that, at
highway speeds, ‘‘the parameter which causes the greatest variation in dynamic tire forces, and the
largest changes in ranking of suspensions, is the road roughness level”. Moreover, as indicated in
Ref. [12], there is evidence that “fatigue failure of pavements is likely to be governed by peak
dynamic forces, and not by the average dynamic forces’. Then it follows that, both in bridge and
pavement-damage related applications, it is critically important to establish how the peak tire
forces depend on the irregularity dimensions, suspension characteristics, and vehicle speed.

The general idea of the approach discussed in this paper is the same as in the undamped case
[11]: to decouple equations governing vibration of an MDOF vehicle model moving along an
uneven road and to solve the uncoupled equations in the modal space. In the damped case,
however, the governing equations cannot be uncoupled by direct transformation to the modal
coordinates. Therefore, we first transform the system of second order governing differential
equations to the state-space form. Then, solving the eigenvalue problem in the state space and
representing the system response as a series in terms of vehicle eigenfunctions, we get an
uncoupled system of first-order complex differential equations in modal coordinates. Note that
the decoupling technique is, essentially, just an application of the conventional damped modal
analysis to the problem under consideration. For a local irregularity described functionally, all
equations are solved analytically, with the solutions being expressed in terms of a unique function
of one complex variable, which is specific to a given shape of an irregularity. When transforming
back to the physical space, the modal forces give rise to the Fourier components of the contact
forces. No iterative procedures or numerical integration of the governing differential equations
are involved, and all desired characteristics are calculated by analytical formulas.

The format of the presentation is as follows: In Section 2, the mathematical statement of the
problem is given. In Section 3, the equations governing vibration of an MDOF vehicle moving
along an arbitrary profile are, first, transformed to the state-space form and, then, reduced to an
uncoupled system of first order complex differential equations in modal coordinates. For a local
irregularity described functionally, these modal equations are solved analytically, which is
discussed in Section 4. Sections 5 and 6 present the technique for the calculation of the Fourier
components of the tire forces due to passing a local irregularity. Results of numerical experiments
with simple vehicle models are presented and discussed in Section 7. Finally, pothole dynamic
amplification factors for several potholes are derived in Appendix A.

2. Problem statement

Consider a vehicle model with n degrees of freedom and m contact points, schematically shown
in Fig. 1. Let z(1) e R" be a vector of its physical coordinates such that z(z) = 0 corresponds to the
equilibrium state and z.eR" be a vector of vehicle coordinates (in the general case, linear
combinations of the coordinates) that take part in the interaction with the ground. Denote by /,
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Fig. 1. A schematic of an MDOF vehicle moving along an uneven profile.
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Fig. 2. (a) 2-DOF and (b) 4-DOF vehicle models.

i =1,...,m, the distance between the first and ith contact points, such that /; =0 and /;;| — /; is
the distance between the (i + 1)th and ith contact points (axles). Let M be the mass matrix and K
and C be stiffness and damping matrices of the free-free vehicle. Denote by S, the m x n matrix
that “‘chooses” contact coordinates, z. = S,z, and by Kj,; and Cj,, symmetric m X m matrices
describing the interaction of the vehicle with the ground.

To exemplify the above notation, let us consider the ‘“quarter-car’” and ‘‘half-car”” models
depicted in Fig. 2 [6]. For the “quarter-car” model (Fig. 2(a)), we have n=2, m=1, [} =0,
Kiny = 2ky, Ciny = 2¢5, and S, = [0, 1]. For the “half-car’” model (Fig. 2(b)), n =4, m=2,1, =0,

L=1,
o 0 0 01 0
D Cint == 5 Sv = .
0 o 0 0 0 1

kry O
Kim =
0 k
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The vehicle mass, stiffness, and damping matrices are written in a standard way and not presented
here. The order of numbering the coordinates can be easily understood from the form of the
matrices S,.

The vibration of the vehicle moving with a speed v along a road with longitudinal profile r(x) is
governed by the equation

ME(t) + C:(t) + Kz(t) = ST KingS,r(vt) + ST Cing S,(v2), (1)

where K = K+ STKiyS, and C = C+ ST G S, are the stiffness and damping matrices of the
supported vehicle and S, is the operator defined by S.r(x) = [r(x — 1)), r(x — b), ..., r(x — I,)] .

Any road surface unevenness excites vehicle vibration and results in the appearance of dynamic
components of the contact forces, which are given by

F(t) = Kin(Soz — Syr(vf)) + Cond(Soz — S,ivt)), F.eR™ )

After passing an isolated irregularity, the vehicle freely vibrates and the vector of tire forces can be
represented as a sum of harmonic components (with decaying amplitudes),

F.()= z”: Fi(1),  Fl(1) = f;e"" cos(wjt + ¢)), (3)
=1

where o; and w; are real and imaginary parts of the vehicle eigenfrequencies 4; = «; + iw;. Our
primary goal is to estimate the contribution of all harmonics in the resulting tire forces.'

In the undamped case, o; = 0, and it was quite reasonable to measure the dynamic effect of a
pothole in terms of the amplitudes f; of the harmonic forces [11]. The situation is more involved in
the damped case, since the magnitude of the force reduces with time. In the case of light damping,
it seems natural to consider the coefficient f; as a measure of the “magnitude’ of the jth force. We
will use these coefficients, which are further referred to as Fourier coefficients, or amplitudes, of
the harmonic forces to assess the effect of a pothole throughout this work. However, for a highly
damped oscillator, the maximum magnitude of the contact force may be considerably lower than
/fj because of the term €%’ and the phase delay ¢;. Moreover, in the verification of the method and
the codes implementing it by numerically modelhng a vehicle passing a pothole, we can observe
values of the contact force at any moment but cannot directly measure the quantity f; and, thus,
cannot check whether a priori estimates of f; obtained by means of the technique being developed
are correct. Note also that, in some applications (such as those related to road damage),
peak values of the contact forces are of major interest. Hence, another candidate for the quantity
in terms of which the contribution of the jth harmonic due to a pothole is to be measured is
the maximum magnitude of the jth harmonic after passing a pothole, max;> T],|F(’;(l)|, where T, is
the time required to pass the pothole. In what follows, we will use both quantities to represent the
effect of a pothole on the vehicle dynamics.

The technique based on the transformation to the modal coordinates, which was used in the
undamped case [11], cannot be directly applied to the damped case as the three matrices M, K,

'Tt should be noted that, in certain applications, of interest are also peak tire forces during the passage of the pothole.
However, in this case, the right-hand side of Eq. (2) cannot be represented as the sum (3) of the harmonics, and the
technique to be discussed in the paper cannot directly be applied. Therefore, in this paper, we confined ourselves to
calculating the response only after the pothole. The extension of the method to calculating peak tire forces in the
pothole will be discussed in a future paper.
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and C cannot, generally, be simultaneously diagonalized. In order to uncouple system (1), we need
first to transform it to a system of first order differential equations in the state space.

3. Decomposition in the state space

By introducing the notation X for the state-space vector,

X(t) = { 22 } eRY,

the governing equation (1) is written in the state space as
X=AX +F, (4)
where

OI’lXI‘l Il’lX}’l

A=
-M'K —-M-'C

b

. s a 0 0 )
F=F+F = { MSTKe }S,r(vt) + { M1STCon }S,,r(vt).

Let A = diag[4;, ..., Ay, A—1, ..., A_p], where A4 €C are eigenvalues of the homogeneous equation

(4), A = o +iwg. Denote by ¢ =[¢y,....¢,,¢_1,....0_,] and =, ..., 0y, 0]
matrices of the orthonormalized eigenvectors of 4 and AT [16],

Ap = pA, AV =yA, Yy*o=2I, Yy*Ad =24,

where the bar and asterisk denote complex conjugate and adjoint quantities, respectively. It is well
known [16] that 2y = Ak, p_, = Py, and Y _; = Y.
Representing X in the form

X (1) = 3¢4(1),

where ¢(¢) is a 2n-vector of modal coordinates, substituting it into Eq. (4), and premultiplying the
equation obtained by y*, we get the system of the uncoupled equations in g,

q=Aq+y*F,
or, in the coordinate-wise form,
Qr = gk + Vi Fr + B, (5)

where k = +1, ..., +n. By complex conjugation of Eq. (5), we find that ¢_; = g, and X is a real
vector,

I 1 i e
X = 3 Z bk = EZ [Prar + drar]l = Z Re[¢qx].
k=1 k=1

k=—n
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[SF ; ] { o }}
X — ] ) (6)
0 S, || i)

Thus, we have reduced the coupled equations (1) in the physical space to the system (5) of n
uncoupled equations in modal coordinates g, (7). By introducing the notation

o o
Dk1=¢k[ ], Dkzzlﬂk[

The contact forces are calculated as
S, O

Fc = [I<int> Cint]{ 0 S

, 7
MSTKy M1STCiy @

where Dy and Dy, are complex vectors of length m, Eq. (5) is written in the form
Gk = Aqi + Diaar(vt — 1) + Dy ii(vt — L) + -+ + Dy (vt — L) + Dyt (vt — L) (8)

Here Dy ; and Dy, are the ith components of the vectors Dy, and Dy, respectively.

4. Solution of the uncoupled equations for local irregularities

We now apply the decomposition obtained to the calculation of pothole-induced contact forces.
By pothole, we mean a local irregularity; i.e., r(x) is zero outside a certain finite interval [xg, xo +
b]. We will classify potholes in terms of their shapes. The latter is a function 7(x) that is defined on
a fixed interval, vanishes at the endpoints of the interval,” and satisfies the condition
max, |7(x") — F(x")] = 1. For definiteness, in this section, we assume that the shape function is
defined on [0, 1], although, in some cases (e.g., when 7(x) is a trigonometric function), it may
be more convenient to consider functions 7(x) defined on different intervals, e.g., [0,2x]
(see Appendix A).

Then, a particular pothole r(x) located on an interval of length b is defined as r(x) =
af((x — x9)/b). The numbers a and b >0 are referred to as the pothole “depth” and “width,”
respectively. By convention, r(x) <0 corresponds to a depression in the road surface, and r(x) >0
corresponds to an elevation in the profile. Two potholes r;(x) and r,(x) are said to be of the same
shape if they can be described by means of one shape function #(x); i.e., ri(x) = a;7((x — x01)/b1)
and r(x) = a7((x — x02)/b2). In this case, they may differ by their dimensions, i.e., by width and
depth.

We will be interested in the contact forces arising after passing a pothole. Denote by 7, the time
required to pass the pothole. For 1> T, Eq. (5) is homogeneous and describes the free vibration
of an oscillator with eigenfrequency w; and damping coefficient oy. The solution to this equation
is

qk(t) — qk(Tp)eZk(thp)’ > Tp’ (9)

where ¢gi(7}) is the solution of the inhomogeneous Eq. (5) at # = T,,. Thus, we first need to find
qi(T}), the solution of Eq. (8) (or Eq. (5)) at t = T,,.

2Note that this requirement is not necessary and is assumed to simplify the notation. The resulting equations can
easily be modified to adopt the case where r(xy+ b)#r(xy) (different grades of the road before and after the
irregularity).
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4.1. Pothole dynamic amplification factor
For a given pothole r(x), consider the complex-valued integral
T, blv
1= / (o) dt = al / el I(vt /b) dr, (10)
0 0

where / is an arbitrary complex number. As can be seen, the value of this integral is determined by
the shape 7(x) of the pothole and depends on four parameters: a, b, v, and 4, with the dependence
on a being trivial. Let us show that the remaining three parameters are combined in one, such that
the integral is a function of only one complex parameter. Indeed, denoting

b

Y= (1D)
v

and changing the integration variable, T = (b/v)&, we get
1 1
r=a®? [ emn-ane e = ap [ 090 dé = any) (12)
0 0
where

1
o) = /0 1-95() d. (13)

As can be seen, the integral / depends on only one parameter y (not counting the linear
dependence on a), which represents the combined effect of b,v, and 4. The complex-valued
function @(y) is specific to the pothole shape and is referred to as the pothole dynamic amplification
factor (DAF). For a pothole shape described functionally, it can be obtained in an analytical,
explicit, form (see, e.g., Appendix A). In the next two sections, we will show that solutions of all
modal equations (5) for > T, can be expressed in terms of this function. First, we solve Eq. (8) in
the case of one contact point (m = 1).

4.2. The case of one contact point

In this case, Dy and Dy, are scalars, and Eq. (8) takes the form (recall that, by definition,
[y =0)

Gx = Aiqr + Diar(vt) + Dioi(vt), k=1,...,n. (14)
Clearly, the solution to Eq. (14) can be represented as
qk(1) = Dr1qx1(9) + Diaqra(0), (15)
where ¢;1(f) and g»(¢) are solutions to the complex differential equations
Gkt = Aqia + 10, qra = Arqra + Hv1). (16,17)

First, we will show that g;; and g, are related to each other. Indeed,

t
gun(0) = / I (ur) d, (18)
0
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t t
qio(t) = / e Dj(vr) dr = / e 0d[r(vr))]
0 0

t
= r(vr)e)'k(’%)};+/1k / eI p(ut) dt = r(vf) + Aeqia (2)
0

(by virtue of the condition r(0) = 0). Substituting ¢t = 7, = b/v and taking into account that
r(vT,) = r(b) = 0, we find that, for any pothole shape,

qi2(Tp) = 2kqia (T)). (19)

Substituting ¢ = 7}, into Eq. (18), comparing the equation obtained with Eq. (10), and taking
into account Egs. (12) and (19), we obtain
a
qu(Tp) = a®P(y,) and le(Tp) = E
where v, is given by Eq. (11) upon substitution of A; for 4, and @ is the pothole amplification
factor (13).

Substituting these into Eq. (15) and denoting
_ D
/llc

D(7),

Dy

+ Dia, (20)

we finally get
q(Tp) = aDrP(yy)- 21)

Remark 1. In the undamped case, the pothole DAF function shows how much the amplitude of
the free vibration of the oscillator after passing the pothole is greater than the pothole depth [17,
Eq. (10)]. Comparing this with Eq. (21) and treating aDj, as a complex pothole depth in the modal
space, we arrive at the same interpretation as in the undamped case: @(y;) shows how much the
response of the modal oscillator after passing the pothole is greater than the pothole depth, which
explains the use of the term “pothole dynamic amplification factor” for this function.

4.3. Arbitrary number of contact points

In the general case of m>1, the solution to Eq. (8) can be found as
a() = i), (22)
i=1

where g (?) is a solution to the equation
q.kwj — )”qu,i = Dkl,,-r(vt — l,) + Dkz,ﬂ"(l)[ — l,'), i= 1, cee, M. (23)

For t>T;, where T; = b/v + I;/v is the moment when the right-hand side of Eq. (23) vanishes, the
solution to Eq. (23) describes the free vibration and, as shown in the previous section, is given by

Qi) = qrei(THE ™) = aDy ;d(y;)e™ =T, (24)
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where (cf. with Eq. (20))

D
Dy; = /{d" + Dia,i.
k
For t>T, = T,, where T,, is the time when the last contact point leaves the pothole, Eq. (24) is

valid for any i, and, substituting it into Eq. (22), we get

m
Z Dk l_e)bk(lm*][/v)
=1

Denoting Dy = S 7, Dy e*Un=0/v we get the representation (9) for gx(¢) with gx(7),) given by
Eq. (21). Thus, we see that the values of the modal coordinates at the moment when the vehicle
leaves the pothole in the case of several contact points are calculated by the same formula as in the
case of one contact point; i.e., the case of several contact forces reduces to the case of one contact
point. The basic difference, however, is that, in the former case, the complex number D; depends
on vehicle speed.

Thus, for 1> T, the solutions ¢;(¢) of the uncoupled system (5) are harmonic functions (9) with
decaying amplitudes. The initial values ¢;j(7},) of all modal coordinates, given by Eq. (21), are
obtained by means of the unique complex-valued function @(y), as given in Eq. (13). The basic
result of this section deserves to be formulated as a theorem.

m
ge(t) = a)_ D@y )e™ T = a D(p)e 0,
i=1

Theorem 1. For any local pothole r(x) of width b and depth a, solutions of all uncoupled equations (5)
are expressed in terms of a unique shape-specific function ®(y) (13) of one complex variable as

qi(Tp) = aDrP(yy),
where y,, = Axb/v and

m D i X
Dy = Z < ki Dk2,i> ehlln=1)/v (25)

A
=1 k

5. Calculation of contact forces

For t>T,, the vector of contact force F,(¢) is represented as a sum (3) of harmonic functions
with decaying amplitudes. Let us obtain explicit equations for the functions F/(z), which are
calculated by Eq.(6) upon substitution of Xj(7) = %(qﬁjqj(l) + ¢;g;(1)) for X(f). Taking into
account that r(vt) = i*(vt) = 0 for t>T,, we get

F{ = [1<inta Cint]

v

0
0 Sv] X} = [I<int> Cint]X;'ca (26)
where X = [z, 2] is the “contact” state vector of length 2m, consisting of the contact coordinates
and their time derivatives.

Now, note that the entries of the eigenvectors ¢, € (Dz", j =1, ...,n,are not independent; namely,
for any k=1, ...,n, we have ¢;;,, = 4;¢;; (which follows from the form of the matrix 4 in
Eq. (4)). Therefore, in what follows, we will use only the first storeys of the eigenvectors ¢; and
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will keep the same notation for them; i.e., from now on, ¢; is the n-vector consisting of the first n
coordinates of the “old” vector ¢,.

Introduce the notation qﬁje C" for the reduced (“‘contact’) jth eigenvector, (,b; = Sy¢;. Then,
the vector X} is written as

ye | { biai(0) + ¢5q(r) }
T2 40+ Hdsain) |
Substituting this into Eq. (26) and denoting
Gj = (Kint + 4;Cin)j,  GeC", (27)
we obtain
F] = 1(Gigi(1) + G;g;(1)) = Re{Gjg;(1)}.

Introducing the notation @;(b/v) = ®(y;) = @(4;b/v) and taking into account Egs. (9) and (21), we
obtain

F/ = Re{G;D;(v)a®;(b/v)e’ """} = ae*""TRe{G;D;(v)®;(b/v)e " Tr}. (28)

Denoting by F/' the ith entry of the vector F/ (the jth harmonic component of the ith contact
force) and by Gy, the ith entry of the vector Gj, representing the complex numbers as vectors on the
complex plane,

Gy = 1Gyle'™,  Dy(®) = DI, dy(b/v) = 0,(b/0)le,

and taking the real part of the ith storey of the vector equation (28), we get the desired
representation

FIA (1) = fle?" Deos[wf(t — T)) + @5, (29)

where the amplitude (Fourier coefficient) and phase angle of the jth component of the ith contact
force are given by

1} = dlGyDi()||®;(b/v)l, (30)

Py = P+ P2(0) + @3,(b/v). (31)

As can be seen from Egs. (29)-(31), the dynamics of the vehicle after passing a pothole is
completely determined by the constant matrix G = [Gl_-,-]?}ﬁ \ =[G, ..., G,], speed-dependent
vector D(v) = [Dy(v), ..., D,(v)], and function &(y). Recall that the pothole DAF function is
specific to the pothole shape and does not depend on vehicle parameters. It can be obtained in
analytical form for a number of pothole shapes of interest in advance and be stored in a “‘library”
of pothole DAF functions. On the other hand, the matrix G and vector D(v) are specific to a given
vehicle and can be used with any pothole. They are easily calculated by Egs. (27) and (25) in terms
of physical and modal parameters of the vehicle model and need to be determined once.

Then, the desired characteristics of the vehicle dynamics due to traversing a pothole are
obtained as simply as multiplying the corresponding complex numbers. For example, to find the
amplitude and phase angle of the jth harmonic component of the ith tire force for a given vehicle
moving with a speed vy due to passing a pothole of width by and depth a(, we calculate the product
aGiiDi(vy)®;(bo/vo), where @;(by/vo) is found by substituting 4;by /vy for y into the formula for the
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DAF function &(y) of the pothole. Then, the magnitude and the phase angle of the complex
number obtained are the desired amplitude j;.i and phase angle ¢; of the tire force. Clearly, the
response of any physical coordinate of the vehicle to a road irregularity can be obtained in a
similar way.

As discussed in Section 2, another characteristic of interest is the maximum magnitude of the
harmonic component of the contact force. Differentiating the right-hand side of Eq. (29) and
equating the resulting expression to zero, we find that the maximum of the force occurs at the
moment 7* given by

oo —(@ji + &)/, i @ + <0,
(m—@; —&)/wj, if @+ &=0,

where ¢; = arctan(w;/«;). Taking into account that the force may take its maximum value at
t = T, (when the vehicle leaves the pothole), we finally get

max F/(1) :fji max{|cos ®jil; e”‘-/”*|cos(n/2 + 5_,-)|}. (32)

1>T,

As noted earlier, the basic difference between the cases of one and several contact points is that,
in the former, Dy is a constant complex number, whereas, in the case of m > 1, it is a function of
vehicle speed. From a computational standpoint, this makes no difference: in the codes, Dy is
always calculated by Eq. (25), which is valid for any m, and the amplitudes (maxima) of the
harmonic components of the contact forces are calculated by the same formulas, independent of
the number of contact points. The dependence of D;. on the speed does make a difference when we
want to graphically represent the results of computation. Indeed, in the case of one contact point,
both the amplitudes and the maximum values of the harmonics depend only on parameter b/v
(the dependence on the pothole depth « is trivial) and, hence, can be represented in one figure
versus b/v. In the case of several contact points, these characteristics depend on two parameters
(for a fixed vehicle model) /v and v, which implies that one 2D figure is not sufficient. In
addition, the forces at different contact points are generally different, which requires construction
of families of figures for each contact point separately. The graphical representation of the
computational results in the undamped case was discussed in Ref. [11], which can also be
employed for damped models. In this paper, we confine our numerical illustrations to models with
one contact point, however.

6. Multiple eigenfrequencies

Finally, we discuss modifications required when the system has repeated eigenfrequencies,
which seems to be rather typical for real vehicles (e.g., if a vehicle has p identical axles, the
multiplicity of the axle-hop eigenfrequency may be equal to p). Let 4;, = 4;, = 4; be two repeated
eigenfrequencies. Adding together the two harmonic forces with the same frequency, which are
given by Eq. (28), we obtain

F/ = FI' + F2 = qe""~T) Re{[G), D;,(v) + G;, D}, (0)]®;(b/v)e TP}
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where D; and D;, are complex numbers (25) corresponding to the jjth and j>th eigenmodes and
Gj, and Gj, are the corresponding columns of the matrix G. Then, it follows that the amplitude of
the harmonic force corresponding to the repeated eigenfrequency is given by

i.e., we have to add complex numbers G;;, D;, + Gy, D;, and only then take the absolute value of the
number obtained rather than to add magnitudes of the addends. The extension of this result to the
case of an arbitrary multiplicity of an eigenfrequency is straightforward.

7. Examples

In the examples below, we use a “‘cosine” pothole given by

1 1 — 2nx/b 0<x< b,
) = 2a[ cos ], X (33)
0, x<0,x>b.

The DAF &(y) (Section 4.1) for this pothole is derived in Appendix A.

7.1. Damped SDOF oscillator

For the first example, we consider the application of the technique discussed to the evaluation
of the contact forces acting on the road from an SDOF damped oscillator due to passing a
pothole (33). The complex argument y of the pothole DAF function can be replaced by two real
variables, e.g., magnitude |y| = wob/2nv = fo(b/v) and the modal damping ratio { = a/o,,, where
fo is the undamped oscillator eigenfrequency in Hertz and a.. is the critical damping. The
dependence on the pothole depth a can be dropped by normalizing the dynamic force by the static
force Fy, = ka, where k is the spring stiffness. It can be shown that the vehicle-specific factor GD in
Eq. (30) does not depend on |y|. Hence, it follows that, for a given modal damping ratio, the
dependence of the amplitude (maximum) of the contact force on all other parameters can be
described by one curve. Thus, we can represent all results in one figure as a parameterized family
of curves.

Fig. 3 depicts the family of plots showing the dependence of the normalized amplitude of the
contact force on [y| for different values of { from zero to 40%. Similar plots for the maximum
contact force are depicted in Fig. 4. The y-axis shows how much the corresponding factor is
greater than the static force ka.

Fig. 5 shows several plots of the maximum contact force after passing a pothole for higher levels
of damping (from 60% to 99%). The amplitudes are not presented, since they seem to have no
physical sense for highly damped oscillators: as { tends to one, the peak value of the amplitude
goes to infinity.

The examination of the results obtained shows that, for low damping (from 0 through
approximately 30%), the maximum force reduces rapidly as the damping coefficient increases.
For moderate damping (from 30% through 60%), the dependence of the maximum force on the
damping coefficient is weak (when { varies between 40% and 60%, the maximum force is nearly
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Fig. 3. Dependence of the amplitude of the normalized contact force on the oscillator eigenfrequency, speed, and
pothole width for several values of damping ratio: { = 0 (dotted line), { = 10% (1), { = 20% (2), { = 30% (3), and
{=40% (4).

constant). Starting from { = 60%, the maximum force increases with growth of the damping
coefficient.

Another observation is that, for low and moderate damping, the maximum force, as a function
of y, has two local peaks. The left peak corresponds to the case where the force takes its maximum
value at ¢t = T),, when the oscillator leaves the pothole. The right peak corresponds the case
where the force takes its maximum value after the oscillator passes the pothole. For high levels
of damping, the force always takes its maximum value at ¢t = 7}, and the curves have only one
peak.

7.2. Quarter-car model

We consider a quarter-car model depicted in Fig. 2(a) with the following parameters: m; =
3.6 x 10* kg, my =2.0 x 10° kg, k; =4 x 10° N/m, ky = 1.2 x 10’ N/m, ¢; = 8.0 x 10* Ns/m,
and ¢» = 4.0 x 10* Ns/m. The body-bounce and axle-hop frequencies of the undamped (damped)
model are 2.05 (2.05) Hz and 14.3 (13.3) Hz; the modal damping coefficients in the corresponding
modes are 10% and 35%, respectively. The solid lines in Fig. 6 show the dependence of the
“amplitudes” of the body-bounce (1) and axle-hop (2) forces on b/v. The dashed lines depict the
maximum body-bounce (1) and axle-hop (2) forces. For the sake of comparison, the dotted lines
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Fig. 4. Dependence of the normalized maximum contact force on the oscillator eigenfrequency, speed, and pothole
width for several values of damping ratio: { = 0 (dotted line), { = 10% (1), { = 20% (2), { = 30% (3), and { = 40% (4).

in the figure show the amplitudes of the body-bounce (1) and axle-hop (2) forces for the
undamped model.

As can be seen, the incorporation of damping into the model reduces the contact forces, which
is, of course, expected. It should be noted that the reduction in the axle-hop force is considerably
greater than that in the body-bounce force, which is a general rule explained by the greater mass
of the vehicle body compared to the axle mass.

The aim of the following experiment was to show that softening of the suspension stiffness
(replacement of a steel suspension by an air suspension) increases the axle-hop force, which, in
turn, explains (see Ref. [11] for detail) an interesting phenomenon reported in the DIVINE [1]
report (regarding the replacement of a steel suspension by an air suspension resulting in an
increase of the maximum response of a short-span bridge). The replacement of a steel suspension
by an air suspension was modelled by reducing the spring coefficient £; by a factor of two,
ki =2 x 10° N/m. All other parameters are unchanged. The eigenfrequencies of the new model
are 1.54 and 12.3 Hz, and the corresponding damping ratios increased to 17% and 37%,
respectively.

The dashed lines in Fig. 7 show the maximum body-bounce (1) and axle-hop (2) forces for the
“steel-suspended” (k; = 4 x 10° N/m) vehicle and are the same as those in Fig. 6. (Not to make
the figure messy, the Fourier coefficients of the forces are not depicted). The solid lines correspond
to the “air-suspended” (k; = 2 x 10°® N/m) vehicle. As can be seen, the body-bounce force in the
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Fig. 5. Dependence of the normalized maximum contact force on the oscillator eigenfrequency, speed, and pothole
width for several values of damping ratio: { = 0 (dotted line), { = 60% (1), { = 80% (2), { = 90% (3), and { = 99% (4).

“air-suspended” model is considerably lower than that in the ‘‘steel-suspended” vehicle.
However, the axle-hop force is increased (in spite of the fact that the axle-hop damping became
slightly greater). This phenomenon is not specific to the particular model: the reduction
of the suspension stiffness always increases the maximum axle-hop force, which is explained
from the physical standpoint in Ref. [11]. Thus, the conclusion made in Ref. [11] that an
air-suspended vehicle is potentially more dangerous for short-span bridges remains valid in the
damped case.

It is generally accepted to consider air-suspended vehicles as “‘road-friendly”. However, it
follows from the above that the property of being “‘road-friendly” depends not only on the
suspension stiffness and damping but also on the character of road unevenness. An air-suspended
vehicle is road-friendly for a smooth road with long-wavelength irregularities but may not be
road-friendly for a rough road surface with many short-wavelength potholes, which excite axle
hop. To reduce the axle-hop, it is required to further increase suspension damping. These
observations quite agree with DIVINE’s conclusions based on field experiments: ““Air suspensions
do not necessarily have improved performance in the high-frequency axle modes and, again,
require adequate damping” [1, p. 12].

Experiments (not presented) with variation of the suspension damper coefficient ¢; in the
above-considered 2DOF model (with k; = 4 x 10° N/m) showed that an increase of the damping
above a certain level does not result in reduction of the dynamic loading. For example, when the
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Fig. 6. Amplitudes (solid lines) and maximum values (dashed lines) of the body-bounce (1) and axle-hop (2) forces after
passing a ‘“‘cosine” pothole of depth ¢ = 1 cm by the QC model. Dotted lines depict amplitudes of the body-bounce (1)
and axle-hop (2) forces for the undamped model.

body-bounce modal damping in the above model increases from 20% to 25%, the reduction of the
dynamic tire forces is very small. The increase of the damping ratio from 25% to 33% (for this
value of the body-bounce modal damping, the axle-hop modal damping is equal to 100%) does
not reduce the maximum contact forces. The results of these experiments agree with the
conclusions reported in Ref. [1, p. 12].

7.3. Comparison of the dynamic effects of different potholes

7.3.1. “Half-sine”’ pothole

To illustrate the effect of the pothole shape on the vehicle dynamics, we considered a different—
the so-called “‘half-sine”—pothole given by

—asing, 0<x<bh,
r(x) = b (34)
0, x<0,x>b.

Potholes (33) and (34) have the same width and depth but differ in their shapes. The basic
difference is in their first derivatives near the pothole edges: function (33) is smooth, whereas the
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Fig. 7. The effect of the reduction of the suspension stiffness k; on the body-bounce (1) and axle-hop (2) forces. Dashed
lines correspond to the “‘steel-suspended” model, and solid lines, to the “air-suspended” model.

first derivative of Eq. (34) has jumps at x = 0 and x = b. The function &(y) (Section 4.1) for this
pothole is derived in Appendix A.

Numerical experiments with an SDOF damped oscillator show that plots of both the Fourier
coefficients and maximum contact forces look similar to those in the case of the ““cosine” pothole.
Figs. 8 and 9 demonstrate this for the oscillators with 30% and 60% damping (magnitudes of the
pothole amplification factor functions in the undamped case for these two potholes were derived
and compared in Ref. [17, Fig. 3]). In these figures, the curves showing amplitudes (solid lines) and
maxima (dashed lines) of the contact forces corresponding to the “half-sine” pothole (34) are
marked by 2, and those for the ““cosine” pothole (33), by 1. Here, the x- and y-axis mean the same
as in Figs. 3-5.

These figures, as well as results of other experiments with different damping coefficients (not
presented), show that the peak values of the Fourier coefficient for the ‘“half-sine”” pothole occur
at smaller values of the pothole width b (for a fixed speed v) or greater speeds (for a fixed pothole
width) compared to the “cosine” pothole (i.e., the former are shifted to the left in the figures). As
damping grows, this difference vanishes, such that, starting from about 40-50%, the peaks of
both curves occur at approximately equal values of |y|.

Another observation is that the peak values of the amplitudes and maxima of contact forces are
always greater for the “‘half-sine’” potholes than those for the “cosine’ potholes, and the relative
difference between them grows as the damping increases. This phenomenon seems to be explained
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Fig. 8. Comparison of the amplitudes (solid lines) and maximum contact forces (dashed lines) due to passing ‘““‘cosine”
(1) and “half-sine” (2) potholes for an SDOF oscillator, { = 30%.

by the fact that the “half-sine” pothole has “‘steeper” edges (jumps in the slope), which results in
higher damping forces. Since the contribution of the damping component in the total contact
force increases with the growth of the damping coefficient, the last fact also explains why the
contact force due to the ‘“half-sine” pothole for highly damped oscillators (see, e.g., Fig. 9) is
greater than that due to the ““cosine” pothole for all values of |y|.

7.3.2. “Polynomial” potholes

It is intuitively clear that the effect of a pothole on the dynamics of a vehicle traversing it should
be determined by its ‘“‘geometry configuration” rather than by a particular function used to
approximate the pothole shape. To exemplify and justify this point, we consider two potholes
described by polynomial functions, which were employed in numerical experiments in Ref. [7].
One is given by the second-degree polynomial (A.5); its shape is close to that of the “‘half-sine”
pothole, and the slope at the ends has jumps. The other, described by the fourth-degree
polynomial (A.7), has smooth edges and is similar in shape to the “cosine” pothole. Thus, one
should expect that the effects of these potholes on a moving vehicle must be approximately equal
to those due to the potholes (34) and (33), respectively.

The functions @(y) for the fourth-degree and second-degree polynomial potholes are derived in
Appendix A (Egs. (A.8) and (A.6), respectively). The amplitude and maxima of the contact forces
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Fig. 9. Comparison of the amplitudes (solid lines) and maximum contact forces (dashed lines) due to passing ‘“‘cosine”
(1) and “half-sine” (2) potholes for an SDOF oscillator, { = 60%.

constructed by means of these functions for an SDOF oscillator with damping ratio 30% are
shown in Figs. 10 and 11, respectively (curves marked by 2). These curves are compared with
those obtained for the “cosine” (Fig. 10) and “‘half-sine” (Fig. 11) potholes, which are marked by
1. (Note that, since functions for the trigonometric and polynomial potholes are given in terms of
different y (defined by Egs. (A.1) and (11), respectively), the plots related to the latter were scaled
along the x-axis by 27.) As can be seen, the differences in the results for two pairs of the potholes
compared are negligible from a practical standpoint.

The above implies that the dynamic effect of an irregularity is not sensitive to small variations
in the shape functions as long as they do not considerably change the irregularity “geometry”. In
other words, if two different functions with similar smoothness conditions (e.g., both are
differentiable or have equal jumps at the same set of locations) “adequately” approximate a
pothole shape, it makes little difference which function is used for modelling the pothole. Since
any functional description of a road irregularity is inevitably an approximation, it makes sense to
confine the set of shape functions to several typical ones and create a “library” of pothole DAF
functions. Then, if a given pothole can be approximated by a shape function from the library, we
take advantage of the corresponding DAF function. If none of the “library” shape functions
approximates well the pothole, we can introduce a new shape function and derive the pothole
DAF function for it, extending, thus, the library.
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Fig. 10. Comparison of the amplitudes (solid lines) and maximum contact forces (dashed lines) due to passing ““‘cosine”
(1) and ““4th degree polynomial’ (2) potholes for an SDOF oscillator, { = 30%.

8. Conclusions

1. The technique for the decomposition of an arbitrary linear damped MDOF vehicle model
moving along uneven road has been developed. It reduces the problem of vehicle vibration to
solving independent complex first order differential equations.

2. For a local irregularity described functionally, all differential equations are solved analytically,
with the solutions being expressed in terms of a unique complex-valued function, the so-called
pothole dynamic amplification factor, specific to the pothole shape. Three parameters affecting
the response of a modal oscillator—eigenfrequency, vehicle speed, and pothole width—are
shown to be combined in one complex variable 7.

3. The pothole DAF method has been developed to assess harmonic components of the tire forces
occurring after traversing a local road surface irregularity by a vehicle. The method reduces the
problem to independent a priori calculation of vehicle-specific data and the pothole DAF
function.

4. DAF functions have been derived for several typical pothole configurations.

5. The application of the method has been illustrated by numerical examples. For two simple
vehicle models, plots of the magnitudes of the harmonic components of the contact forces
arising after passing the “cosine” pothole (33) have been constructed, which show the
dependence of these forces on the vehicle speed and pothole width.
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Fig. 11. Comparison of the amplitudes (solid lines) and maximum contact forces (dashed lines) due to passing ‘‘half-
sine” (curves 1) and “2nd degree polynomial” (curves 2) potholes for an SDOF oscillator, { = 30%.

6. The technique is not specific to a particular shape of an irregularity. The replacement of one
local irregularity by another requires simply replacement of one DAF function by another. It
has been shown that the dynamic effect of a pothole is not sensitive to a particular function
used to approximate its shape but is determined by its ““geometric configuration”.

7. The technique discussed has been applied to explain one interesting phenomenon reported in
Ref. [1].

8. The technique can efficiently be used for design purposes. Letting any model parameters vary,
one can immediately get a new family of plots showing dependencies of the magnitudes of the
harmonic components of the contact forces on the vehicle speed and pothole sizes
corresponding to the modified model and, thus, to easily observe the effect of the parameter
variation on the vehicle dynamics.
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Appendix A. Pothole dynamic amplification factors for various potholes

As noted in the beginning of Section 4, for potholes described by trigonometric functions, it is
more convenient to consider the domain [0, 27] rather than [0, 1]. For convenience of notation, we
also redefine y as (cf. Eq. (11))

b

=— Al
il v (A1)
Then, it can be checked directly that Eq. (13) for &(y) takes the form
2n
o) = [ e (A2)
0

A.1. “Cosine” pothole

Substituting the shape function 7#(&) = %(1 —cos &) for the pothole (33) into Eq. (A.2) and
taking the integral, we get
2n

fyesz { ef}'é efyé

2n
o.(y) =1 2my “7¢(1 — — _
0 =1 [ e —eospae =I5 - S

(—ycos & + sin é)}

0
Substituting the integration limits and simplifying, we obtain
1 — e2ny

D.(y) = — 27 1)

(A.3)

A.2. “Half-sine” pothole

The shape function for the pothole (34) is #(&) = sin £/2. Substituting it into Eq. (A.2) and
taking the integral, we get
2n
(—ysin(&/2) — 1cos(¢/2))

0

ye27{ye*7é

2n
Bru(y) = 76 / e sin(¢/2) dé =
S 0 2 4+ %

Simplifying, we obtain

2y(1 4 e>™)

A4
47+ 1 AD

gDhs(’y) =

A.3. Two “polynomial” potholes

Finally, we will get the dynamic amplification factor functions for two potholes considered in
Ref. [7], which are described by polynomial functions. For these potholes, it is more convenient to
take the interval [0, 1] for the domain of the shape functions and introduce the parameter y as in
Section 4.1 (see Eq.(11)). The first pothole (with non-smooth edges) is described by the
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polynomial of the second degree [7, Eq. (1)]:
(&) =48 —48%, 0<e<l. (A.5)

Substituting this into Eq. (13), taking the integral by parts twice, and simplifying, we get

Dp(y) = %[(1 +e)+ @} (A.6)

The shape of the second, “smooth”, pothole is described by the fourth-degree polynomial [7,
Eq. (2)]
O =@2¢- D' =225 -1’ +1, 0<é<l. (A7)
Substituting this into Eq. (13), taking the integral by parts four times, and simplifying, we get
32 o 6(1+e”) 24(1 —¢?)
a>p4<y)=——2{<1—e')+ + =
v v
It can be checked directly that there is no singularity at y = 0, such that both Egs. (A.6) and (A.8)
exist, and @,,(0) = ®,4(0) = 0.

(A.8)
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